!! Module to put all of newuoa-Fortran77 code of Professor Michael J.D. Powell !! in one file and !! provide a Subroutine with a !! Fortran 95 interface for the top level routine. !! Newuoa is an optimization routine for unconstrained optimization !! without using derivatives of the objective function. !! Newuoa consideres an objective function evaluation to be expensive. !! This module is distributed under the same terms as Professor Michael Powells !! newuoa. Basically GNU and you can use it freely. !! Adapted by Tian Lu (sobereva@sina.com) at 2020-Feb-29 MODULE newuoa_module contains !! The routine minimizes CALFUN in X such that the function is !! minimized without using derivatives. !! - SUBROUTINE CALFUN (i_X,o_F) is the function to be minimized without using derivatives. !! It must set o_F (output) to !! the value of the objective function for the (input) !! variables i_X(1),i_X(2),...,i_X(N). !! - X: on entry initial x where search starts. On exit best found !! vector x that minimizes CALFUN. !! - RHOBEG and RHOEND must be set to the initial and final values of a trust !! region radius, so both must be positive with RHOEND<=RHOBEG. Typically !! RHOBEG should be about one tenth of the greatest expected change to a !! variable, and RHOEND should indicate the accuracy that is required in !! the final values of the variables. !! - The value of IPRINT should be set to 0, 1, 2 or 3, which controls the !! amount of printing. Specifically, there is no output if IPRINT=0 and !! there is output only at the return if IPRINT=1. Otherwise, each new !! value of RHO is printed, with the best vector of variables so far and !! the corresponding value of the objective function. Further, each new !! value of F with its variables are output if IPRINT=3. !! - MAXFUN: maximal number of calls to CALFUN. SUBROUTINE newuoa_min(CALFUN, X, RHOBEG, RHOEND, IPRINT, MAXFUN) implicit none interface subroutine CALFUN(i_x, o_f) real(kind=8), dimension(:) :: i_x real(kind=8) :: o_f end subroutine end interface real(kind=8), intent(inout), dimension(:) :: X real(kind=8), intent(in) :: RHOBEG, RHOEND integer, intent(in) :: IPRINT, MAXFUN integer :: NPT, N real(kind=8), dimension(:), allocatable :: W N = size(X) !! - NPT is the number of interpolation conditions. Its value must be in the !! interval [N+2,(N+1)(N+2)/2] with N=size(X). !! NPT=2*N+1 is usually appropriate NPT = 2*N + 1 allocate( W( (NPT+13)*(NPT+N)+3*N*(N+3)/2 ) ) call NEWUOA( CALFUN,N,NPT,X,RHOBEG,RHOEND, & IPRINT, MAXFUN, W ) deallocate( W ) END SUBROUTINE newuoa_min SUBROUTINE NEWUOA(CALFUN,N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,W) implicit none integer, intent(in) :: N, NPT, IPRINT, MAXFUN real(kind=8), intent(inout) :: X(:), W(*) real(kind=8), intent(in) :: RHOBEG,RHOEND interface subroutine CALFUN(i_x,o_f) real(kind=8), dimension(:) :: i_x real(kind=8) :: o_f end subroutine end interface !local variables: integer :: NP, NPTM, NDIM, IXB, IXO, IXN, IXP, IFV, IGQ, & IHQ, IPQ, IBMAT, IZMAT, ID, IVL, IW ! ! This subroutine seeks the least value of a function of many variables, ! by a trust region method that forms quadratic models by interpolation. ! There can be some freedom in the interpolation conditions, which is ! taken up by minimizing the Frobenius norm of the change to the second ! derivative of the quadratic model, beginning with a zero matrix. The ! arguments of the subroutine are as follows. ! N must be set to the number of variables and must be at least two. ! NPT is the number of interpolation conditions. Its value must be in the ! interval [N+2,(N+1)(N+2)/2]. ! Initial values of the variables must be set in X(1),X(2),...,X(N). They ! will be changed to the values that give the least calculated F. ! RHOBEG and RHOEND must be set to the initial and final values of a trust ! region radius, so both must be positive with RHOEND<=RHOBEG. Typically ! RHOBEG should be about one tenth of the greatest expected change to a ! variable, and RHOEND should indicate the accuracy that is required in ! the final values of the variables. ! The value of IPRINT should be set to 0, 1, 2 or 3, which controls the ! amount of printing. Specifically, there is no output if IPRINT=0 and ! there is output only at the return if IPRINT=1. Otherwise, each new ! value of RHO is printed, with the best vector of variables so far and ! the corresponding value of the objective function. Further, each new ! value of F with its variables are output if IPRINT=3. ! MAXFUN must be set to an upper bound on the number of calls of CALFUN. ! The array W will be used for working space. Its length must be at least ! (NPT+13)*(NPT+N)+3*N*(N+3)/2. ! SUBROUTINE CALFUN (X,F) must be provided by the user. It must set F to ! the value of the objective function for the variables X(1),X(2),...,X(N). ! Partition the working space array, so that different parts of it can be ! treated separately by the subroutine that performs the main calculation. NP=N+1 NPTM=NPT-NP IF (NPT .LT. N+2 .OR. NPT .GT. ((N+2)*NP)/2) THEN PRINT 10 10 FORMAT (/4X,'Return from NEWUOA because NPT is not in', & ' the required interval') GO TO 20 END IF NDIM=NPT+N IXB=1 IXO=IXB+N IXN=IXO+N IXP=IXN+N IFV=IXP+N*NPT IGQ=IFV+NPT IHQ=IGQ+N IPQ=IHQ+(N*NP)/2 IBMAT=IPQ+NPT IZMAT=IBMAT+NDIM*N ID=IZMAT+NPT*NPTM IVL=ID+N IW=IVL+NDIM ! The above settings provide a partition of W for subroutine NEWUOB. ! The partition requires the first NPT*(NPT+N)+5*N*(N+3)/2 elements of ! W plus the space that is needed by the last array of NEWUOB. CALL NEWUOB(CALFUN, N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,W(IXB), & W(IXO),W(IXN),W(IXP),W(IFV),W(IGQ),W(IHQ),W(IPQ),W(IBMAT), & W(IZMAT),NDIM,W(ID),W(IVL),W(IW)) 20 RETURN END SUBROUTINE NEWUOA SUBROUTINE NEWUOB(CALFUN,N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,XBASE, & XOPT,XNEW,XPT,FVAL,GQ,HQ,PQ,BMAT,ZMAT,NDIM,D,VLAG,W) implicit none integer, intent(in) :: N, NPT, IPRINT,MAXFUN, NDIM real(kind=8), intent(inout), dimension(:) :: X real(kind=8), intent(in) :: RHOBEG, RHOEND real(kind=8), intent(inout) :: XBASE(*), XOPT(*),XNEW(*), & FVAL(*), GQ(*), HQ(*), PQ(*), D(*), VLAG(*), W(*) real(kind=8), intent(inout) :: BMAT(NDIM,*),ZMAT(NPT,*), XPT(NPT,*) interface subroutine CALFUN(i_x,o_f) real(kind=8), dimension(:) :: i_x real(kind=8) :: o_f end subroutine end interface !local variables integer :: NP, NH,NPTM,NFTEST, NF, NFM, NFMM, ITEMP, JPT, IPT, & IH, IDZ, ITEST, NFSAV, KNEW, I, IP, J, JP, K, KSAVE, & KTEMP, KOPT real(kind=8) :: HALF, ONE, TENTH, ZERO, RHOSQ, RECIP,RECIQ, XIPT, & XJPT, FBEG, FOPT, RHO, DELTA, DIFFA, DIFFB, & XOPTSQ, DSQ, DNORM, RATIO, TEMP, CRVMIN, TEMPQ, & ALPHA, BETA, BSUM, DETRAT, DIFF, DIFFC, DISTSQ, & DX, F, FSAVE, GISQ, GQSQ, HDIAG, SUM, SUMA, SUMB, & DSTEP, SUMZ, VQUAD ! The arguments N, NPT, X, RHOBEG, RHOEND, IPRINT and MAXFUN are identical ! to the corresponding arguments in SUBROUTINE NEWUOA. ! XBASE will hold a shift of origin that should reduce the contributions ! from rounding errors to values of the model and Lagrange functions. ! XOPT will be set to the displacement from XBASE of the vector of ! variables that provides the least calculated F so far. ! XNEW will be set to the displacement from XBASE of the vector of ! variables for the current calculation of F. ! XPT will contain the interpolation point coordinates relative to XBASE. ! FVAL will hold the values of F at the interpolation points. ! GQ will hold the gradient of the quadratic model at XBASE. ! HQ will hold the explicit second derivatives of the quadratic model. ! PQ will contain the parameters of the implicit second derivatives of ! the quadratic model. ! BMAT will hold the last N columns of H. ! ZMAT will hold the factorization of the leading NPT by NPT submatrix of ! H, this factorization being ZMAT times Diag(DZ) times ZMAT^T, where ! the elements of DZ are plus or minus one, as specified by IDZ. ! NDIM is the first dimension of BMAT and has the value NPT+N. ! D is reserved for trial steps from XOPT. ! VLAG will contain the values of the Lagrange functions at a new point X. ! They are part of a product that requires VLAG to be of length NDIM. ! The array W will be used for working space. Its length must be at least ! 10*NDIM = 10*(NPT+N). ! Set some constants. HALF=0.5D0 ONE=1.0D0 TENTH=0.1D0 ZERO=0.0D0 NP=N+1 NH=(N*NP)/2 NPTM=NPT-NP NFTEST=MAX0(MAXFUN,1) ! Set the initial elements of XPT, BMAT, HQ, PQ and ZMAT to zero. DO 20 J=1,N XBASE(J)=X(J) DO 10 K=1,NPT 10 XPT(K,J)=ZERO DO 20 I=1,NDIM 20 BMAT(I,J)=ZERO DO 30 IH=1,NH 30 HQ(IH)=ZERO DO 40 K=1,NPT PQ(K)=ZERO DO 40 J=1,NPTM 40 ZMAT(K,J)=ZERO ! Begin the initialization procedure. NF becomes one more than the number ! of function values so far. The coordinates of the displacement of the ! next initial interpolation point from XBASE are set in XPT(NF,.). RHOSQ=RHOBEG*RHOBEG RECIP=ONE/RHOSQ RECIQ=DSQRT(HALF)/RHOSQ NF=0 50 NFM=NF NFMM=NF-N NF=NF+1 IF (NFM .LE. 2*N) THEN IF (NFM .GE. 1 .AND. NFM .LE. N) THEN XPT(NF,NFM)=RHOBEG ELSE IF (NFM .GT. N) THEN XPT(NF,NFMM)=-RHOBEG END IF ELSE ITEMP=(NFMM-1)/N JPT=NFM-ITEMP*N-N IPT=JPT+ITEMP IF (IPT .GT. N) THEN ITEMP=JPT JPT=IPT-N IPT=ITEMP END IF XIPT=RHOBEG IF (FVAL(IPT+NP) .LT. FVAL(IPT+1)) XIPT=-XIPT XJPT=RHOBEG IF (FVAL(JPT+NP) .LT. FVAL(JPT+1)) XJPT=-XJPT XPT(NF,IPT)=XIPT XPT(NF,JPT)=XJPT END IF ! Calculate the next value of F, label 70 being reached immediately ! after this calculation. The least function value so far and its index ! are required. DO 60 J=1,N 60 X(J)=XPT(NF,J)+XBASE(J) GOTO 310 70 FVAL(NF)=F IF (NF .EQ. 1) THEN FBEG=F FOPT=F KOPT=1 ELSE IF (F .LT. FOPT) THEN FOPT=F KOPT=NF END IF ! Set the nonzero initial elements of BMAT and the quadratic model in ! the cases when NF is at most 2*N+1. IF (NFM .LE. 2*N) THEN IF (NFM .GE. 1 .AND. NFM .LE. N) THEN GQ(NFM)=(F-FBEG)/RHOBEG IF (NPT .LT. NF+N) THEN BMAT(1,NFM)=-ONE/RHOBEG BMAT(NF,NFM)=ONE/RHOBEG BMAT(NPT+NFM,NFM)=-HALF*RHOSQ END IF ELSE IF (NFM .GT. N) THEN BMAT(NF-N,NFMM)=HALF/RHOBEG BMAT(NF,NFMM)=-HALF/RHOBEG ZMAT(1,NFMM)=-RECIQ-RECIQ ZMAT(NF-N,NFMM)=RECIQ ZMAT(NF,NFMM)=RECIQ IH=(NFMM*(NFMM+1))/2 TEMP=(FBEG-F)/RHOBEG HQ(IH)=(GQ(NFMM)-TEMP)/RHOBEG GQ(NFMM)=HALF*(GQ(NFMM)+TEMP) END IF ! Set the off-diagonal second derivatives of the Lagrange functions and ! the initial quadratic model. ELSE IH=(IPT*(IPT-1))/2+JPT IF (XIPT .LT. ZERO) IPT=IPT+N IF (XJPT .LT. ZERO) JPT=JPT+N ZMAT(1,NFMM)=RECIP ZMAT(NF,NFMM)=RECIP ZMAT(IPT+1,NFMM)=-RECIP ZMAT(JPT+1,NFMM)=-RECIP HQ(IH)=(FBEG-FVAL(IPT+1)-FVAL(JPT+1)+F)/(XIPT*XJPT) END IF IF (NF .LT. NPT) GOTO 50 ! Begin the iterative procedure, because the initial model is complete. RHO=RHOBEG DELTA=RHO IDZ=1 DIFFA=ZERO DIFFB=ZERO ITEST=0 XOPTSQ=ZERO DO 80 I=1,N XOPT(I)=XPT(KOPT,I) 80 XOPTSQ=XOPTSQ+XOPT(I)**2 90 NFSAV=NF ! Generate the next trust region step and test its length. Set KNEW ! to -1 if the purpose of the next F will be to improve the model. 100 KNEW=0 CALL TRSAPP (N,NPT,XOPT,XPT,GQ,HQ,PQ,DELTA,D,W,W(NP), & W(NP+N),W(NP+2*N),CRVMIN) DSQ=ZERO DO 110 I=1,N 110 DSQ=DSQ+D(I)**2 DNORM=DMIN1(DELTA,DSQRT(DSQ)) IF (DNORM .LT. HALF*RHO) THEN KNEW=-1 DELTA=TENTH*DELTA RATIO=-1.0D0 IF (DELTA .LE. 1.5D0*RHO) DELTA=RHO IF (NF .LE. NFSAV+2) GOTO 460 TEMP=0.125D0*CRVMIN*RHO*RHO IF (TEMP .LE. DMAX1(DIFFA,DIFFB,DIFFC)) GOTO 460 GOTO 490 END IF ! Shift XBASE if XOPT may be too far from XBASE. First make the changes ! to BMAT that do not depend on ZMAT. 120 IF (DSQ .LE. 1.0D-3*XOPTSQ) THEN TEMPQ=0.25D0*XOPTSQ DO 140 K=1,NPT SUM=ZERO DO 130 I=1,N 130 SUM=SUM+XPT(K,I)*XOPT(I) TEMP=PQ(K)*SUM SUM=SUM-HALF*XOPTSQ W(NPT+K)=SUM DO 140 I=1,N GQ(I)=GQ(I)+TEMP*XPT(K,I) XPT(K,I)=XPT(K,I)-HALF*XOPT(I) VLAG(I)=BMAT(K,I) W(I)=SUM*XPT(K,I)+TEMPQ*XOPT(I) IP=NPT+I DO 140 J=1,I 140 BMAT(IP,J)=BMAT(IP,J)+VLAG(I)*W(J)+W(I)*VLAG(J) ! Then the revisions of BMAT that depend on ZMAT are calculated. DO 180 K=1,NPTM SUMZ=ZERO DO 150 I=1,NPT SUMZ=SUMZ+ZMAT(I,K) 150 W(I)=W(NPT+I)*ZMAT(I,K) DO 170 J=1,N SUM=TEMPQ*SUMZ*XOPT(J) DO 160 I=1,NPT 160 SUM=SUM+W(I)*XPT(I,J) VLAG(J)=SUM IF (K .LT. IDZ) SUM=-SUM DO 170 I=1,NPT 170 BMAT(I,J)=BMAT(I,J)+SUM*ZMAT(I,K) DO 180 I=1,N IP=I+NPT TEMP=VLAG(I) IF (K .LT. IDZ) TEMP=-TEMP DO 180 J=1,I 180 BMAT(IP,J)=BMAT(IP,J)+TEMP*VLAG(J) ! The following instructions complete the shift of XBASE, including ! the changes to the parameters of the quadratic model. IH=0 DO 200 J=1,N W(J)=ZERO DO 190 K=1,NPT W(J)=W(J)+PQ(K)*XPT(K,J) 190 XPT(K,J)=XPT(K,J)-HALF*XOPT(J) DO 200 I=1,J IH=IH+1 IF (I .LT. J) GQ(J)=GQ(J)+HQ(IH)*XOPT(I) GQ(I)=GQ(I)+HQ(IH)*XOPT(J) HQ(IH)=HQ(IH)+W(I)*XOPT(J)+XOPT(I)*W(J) 200 BMAT(NPT+I,J)=BMAT(NPT+J,I) DO 210 J=1,N XBASE(J)=XBASE(J)+XOPT(J) 210 XOPT(J)=ZERO XOPTSQ=ZERO END IF ! Pick the model step if KNEW is positive. A different choice of D ! may be made later, if the choice of D by BIGLAG causes substantial ! cancellation in DENOM. IF (KNEW .GT. 0) THEN CALL BIGLAG (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KNEW,DSTEP, & D,ALPHA,VLAG,VLAG(NPT+1),W,W(NP),W(NP+N)) END IF ! Calculate VLAG and BETA for the current choice of D. The first NPT ! components of W_check will be held in W. DO 230 K=1,NPT SUMA=ZERO SUMB=ZERO SUM=ZERO DO 220 J=1,N SUMA=SUMA+XPT(K,J)*D(J) SUMB=SUMB+XPT(K,J)*XOPT(J) 220 SUM=SUM+BMAT(K,J)*D(J) W(K)=SUMA*(HALF*SUMA+SUMB) 230 VLAG(K)=SUM BETA=ZERO DO 250 K=1,NPTM SUM=ZERO DO 240 I=1,NPT 240 SUM=SUM+ZMAT(I,K)*W(I) IF (K .LT. IDZ) THEN BETA=BETA+SUM*SUM SUM=-SUM ELSE BETA=BETA-SUM*SUM END IF DO 250 I=1,NPT 250 VLAG(I)=VLAG(I)+SUM*ZMAT(I,K) BSUM=ZERO DX=ZERO DO 280 J=1,N SUM=ZERO DO 260 I=1,NPT 260 SUM=SUM+W(I)*BMAT(I,J) BSUM=BSUM+SUM*D(J) JP=NPT+J DO 270 K=1,N 270 SUM=SUM+BMAT(JP,K)*D(K) VLAG(JP)=SUM BSUM=BSUM+SUM*D(J) 280 DX=DX+D(J)*XOPT(J) BETA=DX*DX+DSQ*(XOPTSQ+DX+DX+HALF*DSQ)+BETA-BSUM VLAG(KOPT)=VLAG(KOPT)+ONE ! If KNEW is positive and if the cancellation in DENOM is unacceptable, ! then BIGDEN calculates an alternative model step, XNEW being used for ! working space. IF (KNEW .GT. 0) THEN TEMP=ONE+ALPHA*BETA/VLAG(KNEW)**2 IF (DABS(TEMP) .LE. 0.8D0) THEN CALL BIGDEN (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KOPT, & KNEW,D,W,VLAG,BETA,XNEW,W(NDIM+1),W(6*NDIM+1)) END IF END IF ! Calculate the next value of the objective function. 290 DO 300 I=1,N XNEW(I)=XOPT(I)+D(I) 300 X(I)=XBASE(I)+XNEW(I) NF=NF+1 310 IF (NF .GT. NFTEST) THEN NF=NF-1 IF (IPRINT .GT. 0) PRINT 320 320 FORMAT (/4X,'Return from NEWUOA because CALFUN has been', & ' called MAXFUN times.') GOTO 530 END IF CALL CALFUN(X,F) IF (IPRINT .EQ. 3) THEN PRINT 330, NF,F,(X(I),I=1,N) 330 FORMAT (/4X,'Function number',I6,' F =',1PD18.10, & ' The corresponding X array is:'/(2X,5D15.6)) END IF IF (NF .LE. NPT) GOTO 70 IF (KNEW .EQ. -1) GOTO 530 ! Use the quadratic model to predict the change in F due to the step D, ! and set DIFF to the error of this prediction. VQUAD=ZERO IH=0 DO 340 J=1,N VQUAD=VQUAD+D(J)*GQ(J) DO 340 I=1,J IH=IH+1 TEMP=D(I)*XNEW(J)+D(J)*XOPT(I) IF (I .EQ. J) TEMP=HALF*TEMP 340 VQUAD=VQUAD+TEMP*HQ(IH) DO 350 K=1,NPT 350 VQUAD=VQUAD+PQ(K)*W(K) DIFF=F-FOPT-VQUAD DIFFC=DIFFB DIFFB=DIFFA DIFFA=DABS(DIFF) IF (DNORM .GT. RHO) NFSAV=NF ! Update FOPT and XOPT if the new F is the least value of the objective ! function so far. The branch when KNEW is positive occurs if D is not ! a trust region step. FSAVE=FOPT IF (F .LT. FOPT) THEN FOPT=F XOPTSQ=ZERO DO 360 I=1,N XOPT(I)=XNEW(I) 360 XOPTSQ=XOPTSQ+XOPT(I)**2 END IF KSAVE=KNEW IF (KNEW .GT. 0) GOTO 410 ! Pick the next value of DELTA after a trust region step. IF (VQUAD .GE. ZERO) THEN IF (IPRINT .GT. 0) PRINT 370 370 FORMAT (/4X,'Return from NEWUOA because a trust', & ' region step has failed to reduce Q.') GOTO 530 END IF RATIO=(F-FSAVE)/VQUAD IF (RATIO .LE. TENTH) THEN DELTA=HALF*DNORM ELSE IF (RATIO .LE. 0.7D0) THEN DELTA=DMAX1(HALF*DELTA,DNORM) ELSE DELTA=DMAX1(HALF*DELTA,DNORM+DNORM) END IF IF (DELTA .LE. 1.5D0*RHO) DELTA=RHO ! Set KNEW to the index of the next interpolation point to be deleted. RHOSQ=DMAX1(TENTH*DELTA,RHO)**2 KTEMP=0 DETRAT=ZERO IF (F .GE. FSAVE) THEN KTEMP=KOPT DETRAT=ONE END IF DO 400 K=1,NPT HDIAG=ZERO DO 380 J=1,NPTM TEMP=ONE IF (J .LT. IDZ) TEMP=-ONE 380 HDIAG=HDIAG+TEMP*ZMAT(K,J)**2 TEMP=DABS(BETA*HDIAG+VLAG(K)**2) DISTSQ=ZERO DO 390 J=1,N 390 DISTSQ=DISTSQ+(XPT(K,J)-XOPT(J))**2 IF (DISTSQ .GT. RHOSQ) TEMP=TEMP*(DISTSQ/RHOSQ)**3 IF (TEMP .GT. DETRAT .AND. K .NE. KTEMP) THEN DETRAT=TEMP KNEW=K END IF 400 CONTINUE IF (KNEW .EQ. 0) GOTO 460 ! Update BMAT, ZMAT and IDZ, so that the KNEW-th interpolation point ! can be moved. Begin the updating of the quadratic model, starting ! with the explicit second derivative term. 410 CALL UPDATE (N,NPT,BMAT,ZMAT,IDZ,NDIM,VLAG,BETA,KNEW,W) FVAL(KNEW)=F IH=0 DO 420 I=1,N TEMP=PQ(KNEW)*XPT(KNEW,I) DO 420 J=1,I IH=IH+1 420 HQ(IH)=HQ(IH)+TEMP*XPT(KNEW,J) PQ(KNEW)=ZERO ! Update the other second derivative parameters, and then the gradient ! vector of the model. Also include the new interpolation point. DO 440 J=1,NPTM TEMP=DIFF*ZMAT(KNEW,J) IF (J .LT. IDZ) TEMP=-TEMP DO 440 K=1,NPT 440 PQ(K)=PQ(K)+TEMP*ZMAT(K,J) GQSQ=ZERO DO 450 I=1,N GQ(I)=GQ(I)+DIFF*BMAT(KNEW,I) GQSQ=GQSQ+GQ(I)**2 450 XPT(KNEW,I)=XNEW(I) ! If a trust region step makes a small change to the objective function, ! then calculate the gradient of the least Frobenius norm interpolant at ! XBASE, and store it in W, using VLAG for a vector of right hand sides. IF (KSAVE .EQ. 0 .AND. DELTA .EQ. RHO) THEN IF (DABS(RATIO) .GT. 1.0D-2) THEN ITEST=0 ELSE DO 700 K=1,NPT 700 VLAG(K)=FVAL(K)-FVAL(KOPT) GISQ=ZERO DO 720 I=1,N SUM=ZERO DO 710 K=1,NPT 710 SUM=SUM+BMAT(K,I)*VLAG(K) GISQ=GISQ+SUM*SUM 720 W(I)=SUM ! Test whether to replace the new quadratic model by the least Frobenius ! norm interpolant, making the replacement if the test is satisfied. ITEST=ITEST+1 IF (GQSQ .LT. 1.0D2*GISQ) ITEST=0 IF (ITEST .GE. 3) THEN DO 730 I=1,N 730 GQ(I)=W(I) DO 740 IH=1,NH 740 HQ(IH)=ZERO DO 760 J=1,NPTM W(J)=ZERO DO 750 K=1,NPT 750 W(J)=W(J)+VLAG(K)*ZMAT(K,J) 760 IF (J .LT. IDZ) W(J)=-W(J) DO 770 K=1,NPT PQ(K)=ZERO DO 770 J=1,NPTM 770 PQ(K)=PQ(K)+ZMAT(K,J)*W(J) ITEST=0 END IF END IF END IF IF (F .LT. FSAVE) KOPT=KNEW ! If a trust region step has provided a sufficient decrease in F, then ! branch for another trust region calculation. The case KSAVE>0 occurs ! when the new function value was calculated by a model step. IF (F .LE. FSAVE+TENTH*VQUAD) GOTO 100 IF (KSAVE .GT. 0) GOTO 100 ! Alternatively, find out if the interpolation points are close enough ! to the best point so far. KNEW=0 460 DISTSQ=4.0D0*DELTA*DELTA DO 480 K=1,NPT SUM=ZERO DO 470 J=1,N 470 SUM=SUM+(XPT(K,J)-XOPT(J))**2 IF (SUM .GT. DISTSQ) THEN KNEW=K DISTSQ=SUM END IF 480 CONTINUE ! If KNEW is positive, then set DSTEP, and branch back for the next ! iteration, which will generate a "model step". IF (KNEW .GT. 0) THEN DSTEP=DMAX1(DMIN1(TENTH*DSQRT(DISTSQ),HALF*DELTA),RHO) DSQ=DSTEP*DSTEP GOTO 120 END IF IF (RATIO .GT. ZERO) GOTO 100 IF (DMAX1(DELTA,DNORM) .GT. RHO) GOTO 100 ! The calculations with the current value of RHO are complete. Pick the ! next values of RHO and DELTA. 490 IF (RHO .GT. RHOEND) THEN DELTA=HALF*RHO RATIO=RHO/RHOEND IF (RATIO .LE. 16.0D0) THEN RHO=RHOEND ELSE IF (RATIO .LE. 250.0D0) THEN RHO=DSQRT(RATIO)*RHOEND ELSE RHO=TENTH*RHO END IF DELTA=DMAX1(DELTA,RHO) IF (IPRINT .GE. 2) THEN IF (IPRINT .GE. 3) PRINT 500 500 FORMAT (5X) PRINT 510, RHO,NF 510 FORMAT (/4X,'New RHO =',1PD11.4,5X,'Current number of', & ' function evaluations =',I6) PRINT 520, FOPT,(XBASE(I)+XOPT(I),I=1,N) 520 FORMAT (4X,'Least value of F =',1PD23.15,9X,/,4X, & 'The corresponding X array is:'/(2X,5D15.6)) END IF GOTO 90 END IF ! Return from the calculation, after another Newton-Raphson step, if ! it is too short to have been tried before. IF (KNEW .EQ. -1) GOTO 290 530 IF (FOPT .LE. F) THEN DO 540 I=1,N 540 X(I)=XBASE(I)+XOPT(I) F=FOPT END IF IF (IPRINT .GE. 1) THEN PRINT 550, NF 550 FORMAT (/4X,'At the return from NEWUOA',5X, & 'Total times of function evaluations =',I6) PRINT 520, F,(X(I),I=1,N) END IF RETURN END SUBROUTINE NEWUOB SUBROUTINE BIGDEN (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KOPT, & KNEW,D,W,VLAG,BETA,S,WVEC,PROD) IMPLICIT REAL(8) (A-H,O-Z) DIMENSION XOPT(*),XPT(NPT,*),BMAT(NDIM,*),ZMAT(NPT,*),D(*), & W(*),VLAG(*),S(*),WVEC(NDIM,*),PROD(NDIM,*) DIMENSION DEN(9),DENEX(9),PAR(9) ! N is the number of variables. ! NPT is the number of interpolation equations. ! XOPT is the best interpolation point so far. ! XPT contains the coordinates of the current interpolation points. ! BMAT provides the last N columns of H. ! ZMAT and IDZ give a factorization of the first NPT by NPT submatrix of H. ! NDIM is the first dimension of BMAT and has the value NPT+N. ! KOPT is the index of the optimal interpolation point. ! KNEW is the index of the interpolation point that is going to be moved. ! D will be set to the step from XOPT to the new point, and on entry it ! should be the D that was calculated by the last call of BIGLAG. The ! length of the initial D provides a trust region bound on the final D. ! W will be set to Wcheck for the final choice of D. ! VLAG will be set to Theta*Wcheck+e_b for the final choice of D. ! BETA will be set to the value that will occur in the updating formula ! when the KNEW-th interpolation point is moved to its new position. ! S, WVEC, PROD and the private arrays DEN, DENEX and PAR will be used ! for working space. ! D is calculated in a way that should provide a denominator with a large ! modulus in the updating formula when the KNEW-th interpolation point is ! shifted to the new position XOPT+D. ! Set some constants. HALF=0.5D0 ONE=1.0D0 QUART=0.25D0 TWO=2.0D0 ZERO=0.0D0 TWOPI=8.0D0*DATAN(ONE) NPTM=NPT-N-1 ! Store the first NPT elements of the KNEW-th column of H in W(N+1) ! to W(N+NPT). DO 10 K=1,NPT 10 W(N+K)=ZERO DO 20 J=1,NPTM TEMP=ZMAT(KNEW,J) IF (J .LT. IDZ) TEMP=-TEMP DO 20 K=1,NPT 20 W(N+K)=W(N+K)+TEMP*ZMAT(K,J) ALPHA=W(N+KNEW) ! The initial search direction D is taken from the last call of BIGLAG, ! and the initial S is set below, usually to the direction from X_OPT ! to X_KNEW, but a different direction to an interpolation point may ! be chosen, in order to prevent S from being nearly parallel to D. DD=ZERO DS=ZERO SS=ZERO XOPTSQ=ZERO DO 30 I=1,N DD=DD+D(I)**2 S(I)=XPT(KNEW,I)-XOPT(I) DS=DS+D(I)*S(I) SS=SS+S(I)**2 30 XOPTSQ=XOPTSQ+XOPT(I)**2 IF (DS*DS .GT. 0.99D0*DD*SS) THEN KSAV=KNEW DTEST=DS*DS/SS DO 50 K=1,NPT IF (K .NE. KOPT) THEN DSTEMP=ZERO SSTEMP=ZERO DO 40 I=1,N DIFF=XPT(K,I)-XOPT(I) DSTEMP=DSTEMP+D(I)*DIFF 40 SSTEMP=SSTEMP+DIFF*DIFF IF (DSTEMP*DSTEMP/SSTEMP .LT. DTEST) THEN KSAV=K DTEST=DSTEMP*DSTEMP/SSTEMP DS=DSTEMP SS=SSTEMP END IF END IF 50 CONTINUE DO 60 I=1,N 60 S(I)=XPT(KSAV,I)-XOPT(I) END IF SSDEN=DD*SS-DS*DS ITERC=0 DENSAV=ZERO ! Begin the iteration by overwriting S with a vector that has the ! required length and direction. 70 ITERC=ITERC+1 TEMP=ONE/DSQRT(SSDEN) XOPTD=ZERO XOPTS=ZERO DO 80 I=1,N S(I)=TEMP*(DD*S(I)-DS*D(I)) XOPTD=XOPTD+XOPT(I)*D(I) 80 XOPTS=XOPTS+XOPT(I)*S(I) ! Set the coefficients of the first two terms of BETA. TEMPA=HALF*XOPTD*XOPTD TEMPB=HALF*XOPTS*XOPTS DEN(1)=DD*(XOPTSQ+HALF*DD)+TEMPA+TEMPB DEN(2)=TWO*XOPTD*DD DEN(3)=TWO*XOPTS*DD DEN(4)=TEMPA-TEMPB DEN(5)=XOPTD*XOPTS DO 90 I=6,9 90 DEN(I)=ZERO ! Put the coefficients of Wcheck in WVEC. DO 110 K=1,NPT TEMPA=ZERO TEMPB=ZERO TEMPC=ZERO DO 100 I=1,N TEMPA=TEMPA+XPT(K,I)*D(I) TEMPB=TEMPB+XPT(K,I)*S(I) 100 TEMPC=TEMPC+XPT(K,I)*XOPT(I) WVEC(K,1)=QUART*(TEMPA*TEMPA+TEMPB*TEMPB) WVEC(K,2)=TEMPA*TEMPC WVEC(K,3)=TEMPB*TEMPC WVEC(K,4)=QUART*(TEMPA*TEMPA-TEMPB*TEMPB) 110 WVEC(K,5)=HALF*TEMPA*TEMPB DO 120 I=1,N IP=I+NPT WVEC(IP,1)=ZERO WVEC(IP,2)=D(I) WVEC(IP,3)=S(I) WVEC(IP,4)=ZERO 120 WVEC(IP,5)=ZERO ! Put the coefficents of THETA*Wcheck in PROD. DO 190 JC=1,5 NW=NPT IF (JC .EQ. 2 .OR. JC .EQ. 3) NW=NDIM DO 130 K=1,NPT 130 PROD(K,JC)=ZERO DO 150 J=1,NPTM SUM=ZERO DO 140 K=1,NPT 140 SUM=SUM+ZMAT(K,J)*WVEC(K,JC) IF (J .LT. IDZ) SUM=-SUM DO 150 K=1,NPT 150 PROD(K,JC)=PROD(K,JC)+SUM*ZMAT(K,J) IF (NW .EQ. NDIM) THEN DO 170 K=1,NPT SUM=ZERO DO 160 J=1,N 160 SUM=SUM+BMAT(K,J)*WVEC(NPT+J,JC) 170 PROD(K,JC)=PROD(K,JC)+SUM END IF DO 190 J=1,N SUM=ZERO DO 180 I=1,NW 180 SUM=SUM+BMAT(I,J)*WVEC(I,JC) 190 PROD(NPT+J,JC)=SUM ! Include in DEN the part of BETA that depends on THETA. DO 210 K=1,NDIM SUM=ZERO DO 200 I=1,5 PAR(I)=HALF*PROD(K,I)*WVEC(K,I) 200 SUM=SUM+PAR(I) DEN(1)=DEN(1)-PAR(1)-SUM TEMPA=PROD(K,1)*WVEC(K,2)+PROD(K,2)*WVEC(K,1) TEMPB=PROD(K,2)*WVEC(K,4)+PROD(K,4)*WVEC(K,2) TEMPC=PROD(K,3)*WVEC(K,5)+PROD(K,5)*WVEC(K,3) DEN(2)=DEN(2)-TEMPA-HALF*(TEMPB+TEMPC) DEN(6)=DEN(6)-HALF*(TEMPB-TEMPC) TEMPA=PROD(K,1)*WVEC(K,3)+PROD(K,3)*WVEC(K,1) TEMPB=PROD(K,2)*WVEC(K,5)+PROD(K,5)*WVEC(K,2) TEMPC=PROD(K,3)*WVEC(K,4)+PROD(K,4)*WVEC(K,3) DEN(3)=DEN(3)-TEMPA-HALF*(TEMPB-TEMPC) DEN(7)=DEN(7)-HALF*(TEMPB+TEMPC) TEMPA=PROD(K,1)*WVEC(K,4)+PROD(K,4)*WVEC(K,1) DEN(4)=DEN(4)-TEMPA-PAR(2)+PAR(3) TEMPA=PROD(K,1)*WVEC(K,5)+PROD(K,5)*WVEC(K,1) TEMPB=PROD(K,2)*WVEC(K,3)+PROD(K,3)*WVEC(K,2) DEN(5)=DEN(5)-TEMPA-HALF*TEMPB DEN(8)=DEN(8)-PAR(4)+PAR(5) TEMPA=PROD(K,4)*WVEC(K,5)+PROD(K,5)*WVEC(K,4) 210 DEN(9)=DEN(9)-HALF*TEMPA ! Extend DEN so that it holds all the coefficients of DENOM. SUM=ZERO DO 220 I=1,5 PAR(I)=HALF*PROD(KNEW,I)**2 220 SUM=SUM+PAR(I) DENEX(1)=ALPHA*DEN(1)+PAR(1)+SUM TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,2) TEMPB=PROD(KNEW,2)*PROD(KNEW,4) TEMPC=PROD(KNEW,3)*PROD(KNEW,5) DENEX(2)=ALPHA*DEN(2)+TEMPA+TEMPB+TEMPC DENEX(6)=ALPHA*DEN(6)+TEMPB-TEMPC TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,3) TEMPB=PROD(KNEW,2)*PROD(KNEW,5) TEMPC=PROD(KNEW,3)*PROD(KNEW,4) DENEX(3)=ALPHA*DEN(3)+TEMPA+TEMPB-TEMPC DENEX(7)=ALPHA*DEN(7)+TEMPB+TEMPC TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,4) DENEX(4)=ALPHA*DEN(4)+TEMPA+PAR(2)-PAR(3) TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,5) DENEX(5)=ALPHA*DEN(5)+TEMPA+PROD(KNEW,2)*PROD(KNEW,3) DENEX(8)=ALPHA*DEN(8)+PAR(4)-PAR(5) DENEX(9)=ALPHA*DEN(9)+PROD(KNEW,4)*PROD(KNEW,5) ! Seek the value of the angle that maximizes the modulus of DENOM. SUM=DENEX(1)+DENEX(2)+DENEX(4)+DENEX(6)+DENEX(8) DENOLD=SUM DENMAX=SUM ISAVE=0 IU=49 TEMP=TWOPI/DFLOAT(IU+1) PAR(1)=ONE DO 250 I=1,IU ANGLE=DFLOAT(I)*TEMP PAR(2)=DCOS(ANGLE) PAR(3)=DSIN(ANGLE) DO 230 J=4,8,2 PAR(J)=PAR(2)*PAR(J-2)-PAR(3)*PAR(J-1) 230 PAR(J+1)=PAR(2)*PAR(J-1)+PAR(3)*PAR(J-2) SUMOLD=SUM SUM=ZERO DO 240 J=1,9 240 SUM=SUM+DENEX(J)*PAR(J) IF (DABS(SUM) .GT. DABS(DENMAX)) THEN DENMAX=SUM ISAVE=I TEMPA=SUMOLD ELSE IF (I .EQ. ISAVE+1) THEN TEMPB=SUM END IF 250 CONTINUE IF (ISAVE .EQ. 0) TEMPA=SUM IF (ISAVE .EQ. IU) TEMPB=DENOLD STEP=ZERO IF (TEMPA .NE. TEMPB) THEN TEMPA=TEMPA-DENMAX TEMPB=TEMPB-DENMAX STEP=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB) END IF ANGLE=TEMP*(DFLOAT(ISAVE)+STEP) ! Calculate the new parameters of the denominator, the new VLAG vector ! and the new D. Then test for convergence. PAR(2)=DCOS(ANGLE) PAR(3)=DSIN(ANGLE) DO 260 J=4,8,2 PAR(J)=PAR(2)*PAR(J-2)-PAR(3)*PAR(J-1) 260 PAR(J+1)=PAR(2)*PAR(J-1)+PAR(3)*PAR(J-2) BETA=ZERO DENMAX=ZERO DO 270 J=1,9 BETA=BETA+DEN(J)*PAR(J) 270 DENMAX=DENMAX+DENEX(J)*PAR(J) DO 280 K=1,NDIM VLAG(K)=ZERO DO 280 J=1,5 280 VLAG(K)=VLAG(K)+PROD(K,J)*PAR(J) TAU=VLAG(KNEW) DD=ZERO TEMPA=ZERO TEMPB=ZERO DO 290 I=1,N D(I)=PAR(2)*D(I)+PAR(3)*S(I) W(I)=XOPT(I)+D(I) DD=DD+D(I)**2 TEMPA=TEMPA+D(I)*W(I) 290 TEMPB=TEMPB+W(I)*W(I) IF (ITERC .GE. N) GOTO 340 IF (ITERC .GT. 1) DENSAV=DMAX1(DENSAV,DENOLD) IF (DABS(DENMAX) .LE. 1.1D0*DABS(DENSAV)) GOTO 340 DENSAV=DENMAX ! Set S to half the gradient of the denominator with respect to D. ! Then branch for the next iteration. DO 300 I=1,N TEMP=TEMPA*XOPT(I)+TEMPB*D(I)-VLAG(NPT+I) 300 S(I)=TAU*BMAT(KNEW,I)+ALPHA*TEMP DO 320 K=1,NPT SUM=ZERO DO 310 J=1,N 310 SUM=SUM+XPT(K,J)*W(J) TEMP=(TAU*W(N+K)-ALPHA*VLAG(K))*SUM DO 320 I=1,N 320 S(I)=S(I)+TEMP*XPT(K,I) SS=ZERO DS=ZERO DO 330 I=1,N SS=SS+S(I)**2 330 DS=DS+D(I)*S(I) SSDEN=DD*SS-DS*DS IF (SSDEN .GE. 1.0D-8*DD*SS) GOTO 70 ! Set the vector W before the RETURN from the subroutine. 340 DO 350 K=1,NDIM W(K)=ZERO DO 350 J=1,5 350 W(K)=W(K)+WVEC(K,J)*PAR(J) VLAG(KOPT)=VLAG(KOPT)+ONE RETURN END SUBROUTINE BIGDEN SUBROUTINE BIGLAG (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KNEW, & DELTA,D,ALPHA,HCOL,GC,GD,S,W) IMPLICIT REAL(8) (A-H,O-Z) DIMENSION XOPT(*),XPT(NPT,*),BMAT(NDIM,*),ZMAT(NPT,*),D(*), & HCOL(*),GC(*),GD(*),S(*),W(*) ! N is the number of variables. ! NPT is the number of interpolation equations. ! XOPT is the best interpolation point so far. ! XPT contains the coordinates of the current interpolation points. ! BMAT provides the last N columns of H. ! ZMAT and IDZ give a factorization of the first NPT by NPT submatrix of H. ! NDIM is the first dimension of BMAT and has the value NPT+N. ! KNEW is the index of the interpolation point that is going to be moved. ! DELTA is the current trust region bound. ! D will be set to the step from XOPT to the new point. ! ALPHA will be set to the KNEW-th diagonal element of the H matrix. ! HCOL, GC, GD, S and W will be used for working space. ! The step D is calculated in a way that attempts to maximize the modulus ! of LFUNC(XOPT+D), subject to the bound ||D|| .LE. DELTA, where LFUNC is ! the KNEW-th Lagrange function. ! Set some constants. HALF=0.5D0 ONE=1.0D0 ZERO=0.0D0 TWOPI=8.0D0*DATAN(ONE) DELSQ=DELTA*DELTA NPTM=NPT-N-1 ! Set the first NPT components of HCOL to the leading elements of the ! KNEW-th column of H. ITERC=0 DO 10 K=1,NPT 10 HCOL(K)=ZERO DO 20 J=1,NPTM TEMP=ZMAT(KNEW,J) IF (J .LT. IDZ) TEMP=-TEMP DO 20 K=1,NPT 20 HCOL(K)=HCOL(K)+TEMP*ZMAT(K,J) ALPHA=HCOL(KNEW) ! Set the unscaled initial direction D. Form the gradient of LFUNC at ! XOPT, and multiply D by the second derivative matrix of LFUNC. DD=ZERO DO 30 I=1,N D(I)=XPT(KNEW,I)-XOPT(I) GC(I)=BMAT(KNEW,I) GD(I)=ZERO 30 DD=DD+D(I)**2 DO 50 K=1,NPT TEMP=ZERO SUM=ZERO DO 40 J=1,N TEMP=TEMP+XPT(K,J)*XOPT(J) 40 SUM=SUM+XPT(K,J)*D(J) TEMP=HCOL(K)*TEMP SUM=HCOL(K)*SUM DO 50 I=1,N GC(I)=GC(I)+TEMP*XPT(K,I) 50 GD(I)=GD(I)+SUM*XPT(K,I) ! Scale D and GD, with a sign change if required. Set S to another ! vector in the initial two dimensional subspace. GG=ZERO SP=ZERO DHD=ZERO DO 60 I=1,N GG=GG+GC(I)**2 SP=SP+D(I)*GC(I) 60 DHD=DHD+D(I)*GD(I) SCALE=DELTA/DSQRT(DD) IF (SP*DHD .LT. ZERO) SCALE=-SCALE TEMP=ZERO IF (SP*SP .GT. 0.99D0*DD*GG) TEMP=ONE TAU=SCALE*(DABS(SP)+HALF*SCALE*DABS(DHD)) IF (GG*DELSQ .LT. 0.01D0*TAU*TAU) TEMP=ONE DO 70 I=1,N D(I)=SCALE*D(I) GD(I)=SCALE*GD(I) 70 S(I)=GC(I)+TEMP*GD(I) ! Begin the iteration by overwriting S with a vector that has the ! required length and direction, except that termination occurs if ! the given D and S are nearly parallel. 80 ITERC=ITERC+1 DD=ZERO SP=ZERO SS=ZERO DO 90 I=1,N DD=DD+D(I)**2 SP=SP+D(I)*S(I) 90 SS=SS+S(I)**2 TEMP=DD*SS-SP*SP IF (TEMP .LE. 1.0D-8*DD*SS) GOTO 160 DENOM=DSQRT(TEMP) DO 100 I=1,N S(I)=(DD*S(I)-SP*D(I))/DENOM 100 W(I)=ZERO ! Calculate the coefficients of the objective function on the circle, ! beginning with the multiplication of S by the second derivative matrix. DO 120 K=1,NPT SUM=ZERO DO 110 J=1,N 110 SUM=SUM+XPT(K,J)*S(J) SUM=HCOL(K)*SUM DO 120 I=1,N 120 W(I)=W(I)+SUM*XPT(K,I) CF1=ZERO CF2=ZERO CF3=ZERO CF4=ZERO CF5=ZERO DO 130 I=1,N CF1=CF1+S(I)*W(I) CF2=CF2+D(I)*GC(I) CF3=CF3+S(I)*GC(I) CF4=CF4+D(I)*GD(I) 130 CF5=CF5+S(I)*GD(I) CF1=HALF*CF1 CF4=HALF*CF4-CF1 ! Seek the value of the angle that maximizes the modulus of TAU. TAUBEG=CF1+CF2+CF4 TAUMAX=TAUBEG TAUOLD=TAUBEG ISAVE=0 IU=49 TEMP=TWOPI/DFLOAT(IU+1) DO 140 I=1,IU ANGLE=DFLOAT(I)*TEMP CTH=DCOS(ANGLE) STH=DSIN(ANGLE) TAU=CF1+(CF2+CF4*CTH)*CTH+(CF3+CF5*CTH)*STH IF (DABS(TAU) .GT. DABS(TAUMAX)) THEN TAUMAX=TAU ISAVE=I TEMPA=TAUOLD ELSE IF (I .EQ. ISAVE+1) THEN TEMPB=TAU END IF 140 TAUOLD=TAU IF (ISAVE .EQ. 0) TEMPA=TAU IF (ISAVE .EQ. IU) TEMPB=TAUBEG STEP=ZERO IF (TEMPA .NE. TEMPB) THEN TEMPA=TEMPA-TAUMAX TEMPB=TEMPB-TAUMAX STEP=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB) END IF ANGLE=TEMP*(DFLOAT(ISAVE)+STEP) ! Calculate the new D and GD. Then test for convergence. CTH=DCOS(ANGLE) STH=DSIN(ANGLE) TAU=CF1+(CF2+CF4*CTH)*CTH+(CF3+CF5*CTH)*STH DO 150 I=1,N D(I)=CTH*D(I)+STH*S(I) GD(I)=CTH*GD(I)+STH*W(I) 150 S(I)=GC(I)+GD(I) IF (DABS(TAU) .LE. 1.1D0*DABS(TAUBEG)) GOTO 160 IF (ITERC .LT. N) GOTO 80 160 RETURN END SUBROUTINE BIGLAG SUBROUTINE TRSAPP (N,NPT,XOPT,XPT,GQ,HQ,PQ,DELTA,STEP, & D,G,HD,HS,CRVMIN) IMPLICIT REAL(8) (A-H,O-Z) DIMENSION XOPT(*),XPT(NPT,*),GQ(*),HQ(*),PQ(*),STEP(*), & D(*),G(*),HD(*),HS(*) ! N is the number of variables of a quadratic objective function, Q say. ! The arguments NPT, XOPT, XPT, GQ, HQ and PQ have their usual meanings, ! in order to define the current quadratic model Q. ! DELTA is the trust region radius, and has to be positive. ! STEP will be set to the calculated trial step. ! The arrays D, G, HD and HS will be used for working space. ! CRVMIN will be set to the least curvature of H along the conjugate ! directions that occur, except that it is set to zero if STEP goes ! all the way to the trust region boundary. ! The calculation of STEP begins with the truncated conjugate gradient ! method. If the boundary of the trust region is reached, then further ! changes to STEP may be made, each one being in the 2D space spanned ! by the current STEP and the corresponding gradient of Q. Thus STEP ! should provide a substantial reduction to Q within the trust region. ! Initialization, which includes setting HD to H times XOPT. HALF=0.5D0 ZERO=0.0D0 TWOPI=8.0D0*DATAN(1.0D0) DELSQ=DELTA*DELTA ITERC=0 ITERMAX=N ITERSW=ITERMAX DO 10 I=1,N 10 D(I)=XOPT(I) GOTO 170 ! Prepare for the first line search. 20 QRED=ZERO DD=ZERO DO 30 I=1,N STEP(I)=ZERO HS(I)=ZERO G(I)=GQ(I)+HD(I) D(I)=-G(I) 30 DD=DD+D(I)**2 CRVMIN=ZERO IF (DD .EQ. ZERO) GOTO 160 DS=ZERO SS=ZERO GG=DD GGBEG=GG ! Calculate the step to the trust region boundary and the product HD. 40 ITERC=ITERC+1 TEMP=DELSQ-SS BSTEP=TEMP/(DS+DSQRT(DS*DS+DD*TEMP)) GOTO 170 50 DHD=ZERO DO 60 J=1,N 60 DHD=DHD+D(J)*HD(J) ! Update CRVMIN and set the step-length ALPHA. ALPHA=BSTEP IF (DHD .GT. ZERO) THEN TEMP=DHD/DD IF (ITERC .EQ. 1) CRVMIN=TEMP CRVMIN=DMIN1(CRVMIN,TEMP) ALPHA=DMIN1(ALPHA,GG/DHD) END IF QADD=ALPHA*(GG-HALF*ALPHA*DHD) QRED=QRED+QADD ! Update STEP and HS. GGSAV=GG GG=ZERO DO 70 I=1,N STEP(I)=STEP(I)+ALPHA*D(I) HS(I)=HS(I)+ALPHA*HD(I) 70 GG=GG+(G(I)+HS(I))**2 ! Begin another conjugate direction iteration if required. IF (ALPHA .LT. BSTEP) THEN IF (QADD .LE. 0.01D0*QRED) GOTO 160 IF (GG .LE. 1.0D-4*GGBEG) GOTO 160 IF (ITERC .EQ. ITERMAX) GOTO 160 TEMP=GG/GGSAV DD=ZERO DS=ZERO SS=ZERO DO 80 I=1,N D(I)=TEMP*D(I)-G(I)-HS(I) DD=DD+D(I)**2 DS=DS+D(I)*STEP(I) 80 SS=SS+STEP(I)**2 IF (DS .LE. ZERO) GOTO 160 IF (SS .LT. DELSQ) GOTO 40 END IF CRVMIN=ZERO ITERSW=ITERC ! Test whether an alternative iteration is required. 90 IF (GG .LE. 1.0D-4*GGBEG) GOTO 160 SG=ZERO SHS=ZERO DO 100 I=1,N SG=SG+STEP(I)*G(I) 100 SHS=SHS+STEP(I)*HS(I) SGK=SG+SHS ANGTEST=SGK/DSQRT(GG*DELSQ) IF (ANGTEST .LE. -0.99D0) GOTO 160 ! Begin the alternative iteration by calculating D and HD and some ! scalar products. ITERC=ITERC+1 TEMP=DSQRT(DELSQ*GG-SGK*SGK) TEMPA=DELSQ/TEMP TEMPB=SGK/TEMP DO 110 I=1,N 110 D(I)=TEMPA*(G(I)+HS(I))-TEMPB*STEP(I) GOTO 170 120 DG=ZERO DHD=ZERO DHS=ZERO DO 130 I=1,N DG=DG+D(I)*G(I) DHD=DHD+HD(I)*D(I) 130 DHS=DHS+HD(I)*STEP(I) ! Seek the value of the angle that minimizes Q. CF=HALF*(SHS-DHD) QBEG=SG+CF QSAV=QBEG QMIN=QBEG ISAVE=0 IU=49 TEMP=TWOPI/DFLOAT(IU+1) DO 140 I=1,IU ANGLE=DFLOAT(I)*TEMP CTH=DCOS(ANGLE) STH=DSIN(ANGLE) QNEW=(SG+CF*CTH)*CTH+(DG+DHS*CTH)*STH IF (QNEW .LT. QMIN) THEN QMIN=QNEW ISAVE=I TEMPA=QSAV ELSE IF (I .EQ. ISAVE+1) THEN TEMPB=QNEW END IF 140 QSAV=QNEW IF (ISAVE .EQ. ZERO) TEMPA=QNEW IF (ISAVE .EQ. IU) TEMPB=QBEG ANGLE=ZERO IF (TEMPA .NE. TEMPB) THEN TEMPA=TEMPA-QMIN TEMPB=TEMPB-QMIN ANGLE=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB) END IF ANGLE=TEMP*(DFLOAT(ISAVE)+ANGLE) ! Calculate the new STEP and HS. Then test for convergence. CTH=DCOS(ANGLE) STH=DSIN(ANGLE) REDUC=QBEG-(SG+CF*CTH)*CTH-(DG+DHS*CTH)*STH GG=ZERO DO 150 I=1,N STEP(I)=CTH*STEP(I)+STH*D(I) HS(I)=CTH*HS(I)+STH*HD(I) 150 GG=GG+(G(I)+HS(I))**2 QRED=QRED+REDUC RATIO=REDUC/QRED IF (ITERC .LT. ITERMAX .AND. RATIO .GT. 0.01D0) GOTO 90 160 RETURN ! The following instructions act as a subroutine for setting the vector ! HD to the vector D multiplied by the second derivative matrix of Q. ! They are called from three different places, which are distinguished ! by the value of ITERC. 170 DO 180 I=1,N 180 HD(I)=ZERO DO 200 K=1,NPT TEMP=ZERO DO 190 J=1,N 190 TEMP=TEMP+XPT(K,J)*D(J) TEMP=TEMP*PQ(K) DO 200 I=1,N 200 HD(I)=HD(I)+TEMP*XPT(K,I) IH=0 DO 210 J=1,N DO 210 I=1,J IH=IH+1 IF (I .LT. J) HD(J)=HD(J)+HQ(IH)*D(I) 210 HD(I)=HD(I)+HQ(IH)*D(J) IF (ITERC .EQ. 0) GOTO 20 IF (ITERC .LE. ITERSW) GOTO 50 GOTO 120 END SUBROUTINE TRSAPP SUBROUTINE UPDATE (N,NPT,BMAT,ZMAT,IDZ,NDIM,VLAG,BETA,KNEW,W) IMPLICIT REAL(8) (A-H,O-Z) DIMENSION BMAT(NDIM,*),ZMAT(NPT,*),VLAG(*),W(*) ! The arrays BMAT and ZMAT with IDZ are updated, in order to shift the ! interpolation point that has index KNEW. On entry, VLAG contains the ! components of the vector Theta*Wcheck+e_b of the updating formula ! (6.11), and BETA holds the value of the parameter that has this name. ! The vector W is used for working space. ! Set some constants. ONE=1.0D0 ZERO=0.0D0 NPTM=NPT-N-1 ! Apply the rotations that put zeros in the KNEW-th row of ZMAT. JL=1 DO 20 J=2,NPTM IF (J .EQ. IDZ) THEN JL=IDZ ELSE IF (ZMAT(KNEW,J) .NE. ZERO) THEN TEMP=DSQRT(ZMAT(KNEW,JL)**2+ZMAT(KNEW,J)**2) TEMPA=ZMAT(KNEW,JL)/TEMP TEMPB=ZMAT(KNEW,J)/TEMP DO 10 I=1,NPT TEMP=TEMPA*ZMAT(I,JL)+TEMPB*ZMAT(I,J) ZMAT(I,J)=TEMPA*ZMAT(I,J)-TEMPB*ZMAT(I,JL) 10 ZMAT(I,JL)=TEMP ZMAT(KNEW,J)=ZERO END IF 20 CONTINUE ! Put the first NPT components of the KNEW-th column of HLAG into W, ! and calculate the parameters of the updating formula. TEMPA=ZMAT(KNEW,1) IF (IDZ .GE. 2) TEMPA=-TEMPA IF (JL .GT. 1) TEMPB=ZMAT(KNEW,JL) DO 30 I=1,NPT W(I)=TEMPA*ZMAT(I,1) IF (JL .GT. 1) W(I)=W(I)+TEMPB*ZMAT(I,JL) 30 CONTINUE ALPHA=W(KNEW) TAU=VLAG(KNEW) TAUSQ=TAU*TAU DENOM=ALPHA*BETA+TAUSQ VLAG(KNEW)=VLAG(KNEW)-ONE ! Complete the updating of ZMAT when there is only one nonzero element ! in the KNEW-th row of the new matrix ZMAT, but, if IFLAG is set to one, ! then the first column of ZMAT will be exchanged with another one later. IFLAG=0 IF (JL .EQ. 1) THEN TEMP=DSQRT(DABS(DENOM)) TEMPB=TEMPA/TEMP TEMPA=TAU/TEMP DO 40 I=1,NPT 40 ZMAT(I,1)=TEMPA*ZMAT(I,1)-TEMPB*VLAG(I) IF (IDZ .EQ. 1 .AND. TEMP .LT. ZERO) IDZ=2 IF (IDZ .GE. 2 .AND. TEMP .GE. ZERO) IFLAG=1 ELSE ! Complete the updating of ZMAT in the alternative case. JA=1 IF (BETA .GE. ZERO) JA=JL JB=JL+1-JA TEMP=ZMAT(KNEW,JB)/DENOM TEMPA=TEMP*BETA TEMPB=TEMP*TAU TEMP=ZMAT(KNEW,JA) SCALA=ONE/DSQRT(DABS(BETA)*TEMP*TEMP+TAUSQ) SCALB=SCALA*DSQRT(DABS(DENOM)) DO 50 I=1,NPT ZMAT(I,JA)=SCALA*(TAU*ZMAT(I,JA)-TEMP*VLAG(I)) 50 ZMAT(I,JB)=SCALB*(ZMAT(I,JB)-TEMPA*W(I)-TEMPB*VLAG(I)) IF (DENOM .LE. ZERO) THEN IF (BETA .LT. ZERO) IDZ=IDZ+1 IF (BETA .GE. ZERO) IFLAG=1 END IF END IF ! IDZ is reduced in the following case, and usually the first column ! of ZMAT is exchanged with a later one. IF (IFLAG .EQ. 1) THEN IDZ=IDZ-1 DO 60 I=1,NPT TEMP=ZMAT(I,1) ZMAT(I,1)=ZMAT(I,IDZ) 60 ZMAT(I,IDZ)=TEMP END IF ! Finally, update the matrix BMAT. DO 70 J=1,N JP=NPT+J W(JP)=BMAT(KNEW,J) TEMPA=(ALPHA*VLAG(JP)-TAU*W(JP))/DENOM TEMPB=(-BETA*W(JP)-TAU*VLAG(JP))/DENOM DO 70 I=1,JP BMAT(I,J)=BMAT(I,J)+TEMPA*VLAG(I)+TEMPB*W(I) IF (I .GT. NPT) BMAT(JP,I-NPT)=BMAT(I,J) 70 CONTINUE RETURN END SUBROUTINE UPDATE END MODULE newuoa_module